

Pennsylvania

Department of Public Welfare
Bureau of Information Systems

Enterprise Asynchronous

Processing
Version 1.0

June 26, 2006
Table of Contents

3Introduction

3Purpose

4Enterprise Asynchronous Report Processing Work Flow

5Interface Overview

5Current Report Request Process

5webMethods Report Request Process

5Near Real-Time Report Request

6Over-Night Report Request

6Interface Architecture

6Application Submission to webMethods Server Processes

6Application Submission Processing Steps

7webMethods Integration Server Processes

7webMethods Integration Server Processing Steps

8StartBatch Service

8StopBatch Service

8InvokeCom_AppLogEvent Service

9ProcessBatch Service

9ProcessReportReq Service

11webMethods Integration Server to Application Server Processes

11webMethods Integration Server to Application Server Processing Steps

11Document Change Log

Enterprise Asynchronous Processing
Introduction

Enterprise Asynchronous Reporting provides a report solution method for Thin and Fat client server development. The department struggles with heavy reporting reliance on Crystal reports, Cognos, and others. Reports of this nature require a run-time license for each instantiation of the report. This is not only expensive; it is time consuming to the User and places large burdens on the application servers. The near-time reporting solution lowers total cost of ownership and reduces the length of time end-users wait for submitting requests to report modules.
Purpose

The purpose of this document is to explain how near-time reporting works through documentation, diagrams and sample code. Existing Thin client models do not have to perform heavy code modifications to leverage this concept. The over-night reporting model is incorporated into existing html pages with minimal change. Principle systems such as CCMIS and LIHEAP are already coding to take advantage of this technique.
Enterprise Asynchronous Report Processing Work Flow

[image: image1.wmf]

Interface Overview
Current Report Request Process

In the current report process, the user submits a report request from the applications report request page. The Application Server receives the report request and calls a Crystal Reports process that makes the database connection. Once a connection is made, a stored procedure is invoked that formats the output and generates the report in pdf format.

The limitation of the current report process becomes readily apparent with increased report request submittals. The increased load on the Application Server can cause system response times to degrade to the point of request ‘time-out’. If the user experiences this, the report request must then be re-submitted. Because the current report request process is not efficiently managing Department resources, an asynchronous process utilizing webMethods integration has been developed.

webMethods Report Request Process

To initiate the report, the user will submit a report request from the applications report request page. The webMethods Integration Server (WM IS) will receive the report request and, if needed, can acknowledge receipt back to the user.

After WM IS has received the report request, there are two methods for handling the request (Near Real-Time or Overnight):

Near Real-Time Report Request

WM IS is capable of handling report requests in near real-time, just like the current report request process. The key advantages in replacing the current process with WM IS are:

1. The user is disconnected from the Application Server reporting process.

2. To be processed in near real-time, the report requests must be designated for near real-time processing.

The types of report requests that would most likely be designated for near real-time processing are:

· Face-to-Face Reporting, e.g. Signature Page
· DPW Secretary/Deputy Secretary Request

· Emergency Request, e.g. Criminal Investigation
Over-Night Report Request

WM IS will handle the typical report request as an over-night process. Once the user report request is received, WM IS will queue the report request for processing during off-peak hours. Once a queued report request is processed, WM IS will notify the user that their report is ready. The types of report requests that would most likely be designated for overnight processing are:

· Standard Periodic Reporting

· User Input Parameter Driven

This two-fold approach to report request processing, via WM IS, improves Departmental efficiency by allocating resources more effectively. By processing routine batch report requests during off-peak hours, WM IS frees Application Server resources, thus enabling more efficient load handling during peak hours. Additionally, the queuing process that WM IS utilizes increases productivity by freeing user computer resources.

The WM IS approach can more effectively utilize current Departmental resources and minimize computer downtime. And the short development time ensures that these increased efficiencies, both individual and organizational, are gained almost immediately.

Interface Architecture
Application Submission to webMethods Server Processes

This section describes the steps and the webMethods Services involved from the initial report request to the ‘post’ of the report request to the WM IS.

Application Submission Processing Steps

3. The User enters the report parameters and submits a report request during normal business hours.

4. The Application Server posts the report request to the Trading Networks component of WM IS.
	Figure 1.1

TNReceive Service

· The TNReceive Service receives the XML report request document from the client application and persists the request to the WM IS database.

· Due to processing speed considerations, all XML schema validation should be performed by the client application prior to the post.

· During Test/Development, a cloned service can be provided that will perform XML schema validation for debugging purposes.

webMethods Integration Server Processes

This section describes the steps and the webMethods Services involved once the Trading Networks component of WM IS receives the XML report request.

webMethods Integration Server Processing Steps

5. The XML report request document is persisted to the webMethods database.

6. OpCon/xps initiates the job to begin processing during batch window. OpCon/xps will reach out to the appropriate servers (dev, prod, etc.) to initiate the jobs.

7. The StartBatch Service updates the start time and tentative end time for the report request, and starts the ProcessBatch Service. Once the ProcessBatch Service is initiated, it periodically checks systime against end time to determine if the process needs to be stopped.
8. The ProcessBatch Service retrieves all the report requests and a process report request is initiated for each received document. At this point, each retrieved report request’s status is changed to process or error.

9. After each logged request is parsed, the report request payload is submitted to the Application Server for execution.

StartBatch Service

· The StopBatch Service receives the Application ID as input. It retrieves the current info for the Application ID in the Batch Start Time and Batch End Time fields of the Async Report Control Table.

· If the previous batch has ended (Current Time > Batch End Time), the Batch Start Time is updated to the current time, a tentative end time is set and the ProcessBatch Service is initiated.

· If the previous batch has not ended, a message stating that the batch is currently active is returned.

· Any Application ID passed to the service that is blank/null is set to error and the service exits with an error.

· An entry is written to the local NT event log at the start and /or completion of this service.

StopBatch Service

· The StopBatch Service receives the Application ID as input. It retrieves the current info for the Application ID in the Batch Start Time and Batch End Time fields of the Async Report Control Table.

· If the previous batch has ended (Current Time > Batch End Time), a message indicating that the job has ended is returned.

· If the previous batch has not ended, the Batch End Time is updated to the current system time.

· Any Application ID passed to the service that is blank/null is set to error and the service exits with an error.

· An entry is written to the local NT event log at the start and/or completion of this service.

InvokeCom_AppLogEvent Service

· The InvokeCom_AppLog Event Service invokes a com wrapper to write to the NT event log.

· The source will appear in the NT log summary as %ApplicationID%StartBatch or %ApplicationID%StopBatch.

· The Service Name, Application ID and Message will appear with the detailed entry logged in the NT event log file.

ProcessBatch Service

· The ProcessBatch Service receives the Application ID and retrieves the Document Type ID for the document name derived as %AppID%&BatchReportReq.

· The Document Type ID is used to retrieve all documents from the TN Database with a user status of received.

· Each record’s corresponding Document Internal ID is retrieved.

· The Internal ID is used to retrieve the actual XML data that is passed to the ProcessReportReq Service.

· An error message is returned for any invalid document type or any valid document type with no data.

ProcessReportReq Service

· The ProcessReportReq Service gets the Document Type from the received XML node.

· A query of the document is performed to extract the request payload.

· The payload is submitted to the Application Server via http.

Figure 1.2

webMethods Integration Server to Application Server Processes

This section describes the steps involved once the ProcessReportReq Service submits the report request to the Application Server.

webMethods Integration Server to Application Server Processing Steps

10. WM IS submits the report-processing request to the Application Server for batch processing.

11. The Application Server executes the request and creates the report.

	Figure 1.3

Document Change Log

	Change Date
	Version
	Change Description
	Author and Organization

	07/23/03
	1.0
	Initial creation.
	Greg Johnson, DPW

	06/26/2006
	1.0
	Reviewed content – No change necessary
	Carla Solomon, DPW

TNReceive

User Screen

Application Server

TNReceive

Start Batch.exe

webMethods BIZDOC TYPE DEF Table

webMethods BIZDOC Table

StartBatch

ProcessBatch

Asynch Report Control Table

InvokeCom_App

LogEvent

ProcessReportReq

StopBatch

NT Event Log

Stop Batch.exe

Process Report Request

Application Server

Report

Store

_1123395857.doc
[image: image1.png]

