
COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF PUBLIC WELFARE
INFORMATION TECHNOLOGY Guideline
	Name Of Guideline:
	Number:

	 Oracle PL/SQL Coding Guidelines
	GDL-DMS006

	Domain:
	Category:

	Data
	Oracle PL/SQL Coding

	Date Issued:
	Issued By:

	09/02/2009
	DPW Bureau of Information Systems

	Date Revised:
	

	New
	

General:
This document contains Best Practices and Helpful Hints for Oracle PL/SQL developers and it is a supplement to Oracle PL/SQL Naming And Coding Standards, STD-DMS001. Normally these guidelines are to be followed, but there may be exceptions when performance may improve resulting in a specific guideline not being followed.
Guideline:
DPW ORACLE PL/SQL Best Practices

Built-in Functions

· Oracle has built-in SQL analytic functions, providing powerful functionality for data grouping and returning rows of grouped data in a “data window”. Familiarization with these functions helps to a great extent. Lot of PL/SQL code can sometimes be replaced with a single built-in function.

· When using built-in PL/SQL functions like UPPER, SUBSTR etc. in the WHERE clause, note that these functions when applied to the column data will exclude the use of an index, if one exists on the column and Oracle wanted to use it. Every built-in function has an overhead, however small. Before using any built-in function, check if it absolutely necessary to get the required data. A function based index can be created if it is absolutely needed to use in the query and is affecting performance.

· In the following example, use of UPPER on both sides can be avoided if a protocol is established on how to store data. Since most of the codes come out of reference tables, it is very unlikely that a lower case or mixed case ADR_STATE can actually be stored in the database. On looking at the actual values of CDE_COUNTY, these are numbers like 01, 02 etc. The function UPPER is not needed.

· Examples below:
WHERE UPPER(P_CDE_COUNTY) = UPPER(CDE_COUNTY)
WHERE UPPER(P_ADR_STATE) = UPPER(ADR_STATE)
WHERE UPPER(P_CDE_TYPE_ADR) = UPPER(CDE_TYPE_ADR)

· If you need to use built-in SQL functions in a WHERE clause, do not use them on columns which have an index. Use them on the other side.

Constants

· Remove all literals (within reason) from the code. Instead, declare constants, which hold those literal values. Allow the value of that literal (now a constant) to be set in only one place in your code, preferably with call to a procedure. This procedure can be run on start-up of the application, or from the initialization of a package.

· Provide a single way to retrieve the literal value. Do not let any program reference the literal directly. This way you reserve the right and ability to change at any time the data structures you use to store that literal – without affecting any of the programs which rely on the constant.
Cursors

· Avoid the use of explicit cursors if at all possible.
· Implicit cursors. PL/SQL declares and automatically manages a cursor implicitly for all SQL data manipulation statements, including queries that return only one row. Information about the execution of an implicit cursor can be tracked though its cursor attributes.
· Explicit cursors. If precise control over query processing is needed, an explicit cursor can be declared in the declarative part of the PL/SQL block, subprogram, or package.
Oracle® Database PL/SQL User's Guide and Reference 10g Release 2 (10.2)
Data Conversions

· Avoid implicit data conversions.

· Example below:
WHERE IDN_ENTITY_LEGAL_PROVR = ‘1111238884’
Will be transformed into
WHERE TO_CHAR(IDN_ENTITY_LEGAL_PROVR) = ‘1111238884’

· As can be seen in above example, since the column is now transformed, Oracle will not be able to use index on IDN_ENTITY_LEGAL_PROVR. Comparing same data types on both sides incurs minimal overhead and reduces the chance of error. Implicit conversion from string to number drops the leading zeros, which may not give you the results you want. Implicit conversion from string to date or vice-versa in comparison semantics can have unexpected results depending on the client side NLS_LANG settings. Implicit conversion also prevents Oracle from using an index if one exists and Oracle wanted to use it.

Exceptions

· In the EXCEPTION block, use WHEN OTHERS THEN NULL; with caution. Even if there is an exception, you will always get the “PL/SQL Procedure completed successfully” message.

Hints

· First try to write the query so that logical I/O is minimized. This means that Oracle is reading least possible amount of blocks from memory to return the data that you need. If everything else fails, use hints. When using bind variables, sometimes hints are the only way to tune a query.

Indexes

· Indexes do not always mean faster performance. Oracle stores data at block level, Oracle reads data at block level. Each block can have multiple rows. Oracle has no idea which blocks contain what row data. Indexes are ordered structures holding key values and pointers to rows containing key values. To locate a row via index (we will assume index unique scan), Oracle first reads root and leaf node blocks of index to locate the ROWID of row containing the key value we are looking for. The root and leaf node blocks can be 1 or 2 or 3 or more depending on the depth of index and how balanced the B*tree is. Once Oracle determines the ROWID, it reads that block from the table and returns the row to us. Since indexes are always ordered and row data in blocks is not, each table block may be read more than once in random order if row data is fetched via index.

· What this means in terms of physical I/O? The first time accessing a table via index, disk head thrashing will occur trying to read blocks randomly. Once all the blocks have been read, they will be placed in buffer cache.

· What this means in terms of logical I/O? Subsequent data access via index will cause excessive buffer reads since each block is maybe read more than once, in addition to the reads on index blocks. The CPU usage will go up and latch contention will appear. Latches are low level serialization mechanisms implemented internally to protect Oracle’s critical memory structures. They are not to be confused with locks, which are high level, well defined queuing mechanism to maintain data integrity.

· What is the alternative? Full table scans are not all that bad. Oracle has a parameter DB_FILE_MULTIBLOCK_READ_COUNT, which lets Oracle, read multiple data blocks during sequential reads, subject to maximum allowed by the OS. Oracle can read all the table blocks with minimum disk head movement, without the need to read any block more than once. Consider this option carefully before discarding full table scans. To retrieve almost all data from a table, FTS is the way to go.

Parallelizing Queries

· Parallelizing queries is not much help in OLTP environments. In parallel query, Oracle assigns multiple processes to process parts of same query. The results from various processes are then aggregated to return the final data. The process of aggregating the results can outweigh the gains of parallelism in OLTP.

Performance

· If you are using DML on associative arrays (index-by PL/SQL table), consider using bulk binds to improve SQL performance.

· Use equijoins (=) wherever possible. Do not use “*=” and “=*” join operators in the WHERE clause. Be careful to pick the join order carefully. The majority of outer joins can be successfully rewritten as inner joins with tremendous performance improvements.

· Follow naming conventions since any varied use of upper and lower case will prevent the cursors from being shared.

· In OLTP processing avoid table scans where at all possible and modify the stored procedure to use an index or create an index that will be used. However, in OLAP processing, table scans may be more efficient.
· Avoid dynamic SQL. If Dynamic SQL cannot be avoided and to avoid hard parsing, use sys_context. Example, SELECT NAM_employee_name from T_EMP WHERE sys_context (John)

· Do not use SELECT COUNT(*) … WHERE… if you just want to know if there is at least one row matching the WHERE criteria. Use either EXISTS or ROWNUM=1.

· Use UNION ALL instead of UNION if you do not need to filter out duplicate records, because UNION ALL is more efficient than UNION.

· Use the CASE statement, ability to insert into multiple tables with single statement, DML statements with RETURNING clause etc.

· Avoid use of SELECT DISTINCT since it can suppress a bad join condition.

· If not needed, avoid using the order by clause since sorting requires overhead.

· Minimize the use of triggers. When using triggers, call a package in which you have placed the logic rather than coding the logic directly in the trigger.

· Avoid using triggers to populate the value of a Primary key with a sequence number since this method is slow and triggers generate extra undo in rollback. Instead generate sequence numbers using NEXTVAL in the INSERT statement. Ex. INSERT INTO Orders_tab (Orderno, Custno) VALUES (Order_seq.NEXTVAL, 1032); Oracle® Database Administrator's Guide 10g Release 2 (10.2) 20 Managing Views, Sequences, and Synonyms
· Do not use GROUP BY in response critical statements.

· Prefer packages of related stored procedures to stand-alone stored procedures. When Oracle loads a package into memory, subsequent calls to sub-routines in the package do not require re-loading the package into memory. In addition, public variables and cursors declared in the package statement are available to all procedures in the package body.

· Use autonomous transactions for units of work to be executed outside of the scope of the transaction that initiated them. For example, if stored procedure 1 initiates a transaction, then calls procedure 2 to do some work that does not participate in the transaction, procedure 2 can be marked as an autonomous transaction (PRAGMA AUTONOMOUS_TRANSACTION;).

· Use short-circuit evaluation to your advantage. PL/SQL stops evaluating the expression as soon as the result can be determined. For example, IF [variable] < 10 AND [function(in)] > 50 THEN will not result in a function call is the variable is less than 10.

· Always specify the length of VARCHAR2. For VARCHAR2(1) to VARCHAR2(1999), the maximum size is pre-allocated. For VARCHAR2(2000) and above, PL/SQL pre-allocates the actual size.

· Packages loaded in shared memory are recycled by an LRU algorithm. For frequently used packages, it is possible to pin them in memory with the help of DBMS_SHARED_POOL.

· PL/SQL is designed to handle data-intensive tasks. Computational intensive tasks may be better performed in external routines (in C, for example). You can use PL/SQL to make calls to external routines.

· Avoid context switching between SQL and PL/SQL.

· Example below:
SELECT col1, col2, pkg_xyz.fn_abc(col3)...
FROM ...
WHERE...

· The use of pkg_xyz.fn_abc() above is a PL/SQL function call. For every row returned by the query, the processing will switch from SQL engine to PL/SQL engine. This is an expensive operation. Such function calls should be made carefully. Using bulk binds, as explained elsewhere, is another way to avoid context switching between SQL and PL/SQL.

Procedures and Functions

Keep the procedures and functions short. The thumb rule is if your procedure or function code exceeds 2-3 screens consider splitting it. Group all the related procedures and functions in packages. When a procedure from a package is accessed for the first time, the entire package is loaded into memory. Subsequent access of procedures within the package will be faster.

Repetition

Programming involves performing a task repeatedly, until a particular condition is met. Looping constructs of a language support this need. There are three basic types of looping: zero or more loops, one or more loops, and loop for a specified number of times. PL/SQL supports all three types of repetition.
Zero or More Times Loop

These are loops where the testing is done at the beginning of a loop. If the condition evaluates to true, then the statements within the loop are executed. Otherwise the statements are skipped and execution is transferred to the statements following the loop.

The syntax for a WHILE...LOOP is as follows:

· WHILE condition
LOOP
 Statements;
END LOOP

Again keep all the keywords in the same column, while indenting the keyword columns by 3 spaces.

One or More Times Loop

These are loops where testing is done as part of the executable portion of the loop, or at the bottom of the loop. PL/SQL only provides a basic type of a loop, which is an infinite loop. The statements within the loop are executed an infinite number of times.

The syntax for a LOOP…END LOOP is as follows:

· LOOP
 Statements;
END LOOP;

This loop can be turned into a one or more times loop by using the EXIT WHEN clause.

· LOOP
 Statements;
 EXIT WHEN Condition;
END LOOP;

Loop for Specified Number of Times

PL/SQL provides for two types of looping constructs. They are the NUMERIC FOR loop and the CURSOR FOR loop.

The syntax for a NUMERIC FOR LOOP is as follows:

· FOR v_for_index IN low_value .. high_value
LOOP
 Statements;
END LOOP;

The syntax for a CURSOR FOR LOOP is as follows:

· FOR v_record_index IN [SELECT dept_no, dept_name FROM dept]
LOOP
 Statements;
END LOOP;

Never declare the FOR Loop Index. The non-standard syntax is as follows:

· FOR v_year_ind IN 1 .. 20
LOOP
 FN_CALC_PROFITS (v_year_ind);
END LOOP;

Do not declare the loop index variable (v_year_ind in the example above). PL/SQL does that automatically. For numeric and cursor FOR loops, the identifier after the FOR keyword is automatically declared by PL/SQL with type BINARY_INTEGER or a record to match the cursor.

If a variable is declared with same name as a loop index, it is a different variable.
Below are nonstandard examples. The code will compile; however, it will not work as intended and is very hard to understand and debug.

· DECLARE
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp;
 emp_rec emp_cur%ROWTYPE;
BEGIN
 FOR emp_rec IN emp_cur
 LOOP
 display_emp (emp_rec.ename);
 END LOOP;
 IF emp_rec.ename = 'FEUERSTEIN'
 THEN
 give_raise
 (emp_rec.empno, 1000000);
 END IF;
END;

· Suppose you need the value of the loop index (year_count in the following example) for debugging:

· DECLARE v_year_count INTEGER := NULL;
BEGIN
 FOR v_year_count IN 1 .. 20
 LOOP
 FN_calc_pnl (v_year_count);
 END LOOP;
EXCEPTION WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in year ' ||
 TO_CHAR (v_year_count));
END;

· In this case use a local variable and copy the loop index to local variable:

· DECLARE v_my_count INTEGER := NULL;
BEGIN
 FOR v_year_count IN 1 .. 20
 LOOP
 v_my_count := v_year_count;
 FN_calc_pnl (v_year_count);
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in year ' ||
 TO_CHAR(v_my_count));
END;

Unstructured Exits from Loops

· Do not EXIT or RETURN out of a FOR loop.

· A FOR loop should only be used when you want to execute the body a fixed number of times.

· Stay for the duration or use a different loop construct.

· Do not use the EXIT syntax in a WHILE loop.

· The loop should be terminated only when the condition in the boundary evaluates to FALSE.

Note: If an exception is raised and the loop stops, that is a legitimate “early termination”.

Tuning

· Tune in dirt. As advised by an Oracle expert, tuning should always be performed in an environment as close to production as possible. Queries tuned in a clean, dust free lab will most likely fail to perform in production.

· What should be the aim of SQL tuning? The aim of SQL tuning should be to minimize logical I/O, physical I/O, sorts and query response time. Generally, if it is possible to minimize logical I/Os, physical I/O will automatically be minimized. How? Logical I/O is reading a block from memory. How the block got into the memory? Through a physical I/O.

· Determine a realistic tuning goal. For example, prior to tuning determine a desired response time. Queries can always be tuned further, but time may be better spent.

Variables

· Declare variables using the %TYPE attribute. If the column data type changes, there is no need to change the variable declaration. Otherwise, declare variables to contain exact worst case length of data that you want it to hold. Avoid declaring NUMBER data type without precision. Without precision, NUMBER data type takes 22 bytes.

· Use PLS_INTEGER for all integer variables. This is the most efficient numeric type. That is because PLS_INTEGER values require less storage than INTEGER or NUMBER values. Also, PLS_INTEGER operations use machine arithmetic, so they are faster than BINARY_INTEGER, INTEGER, or NUMBER operations, which use library arithmetic.

· Watch out for parameters and variables that are declared, but never used.

· If a variable’s value does not change and this behavior is correct, covert the variable to a constant.

· Avoid recycling of variables. Each variable and constant used should have only one purpose with a name clearly defining that purpose.

· Use variables to hide complex logic. By assigning the outcome of an arbitrarily complicated expression to a variable, the variable represents the complex expression and can be used in place of that expression in the code. The result is an easier to read and maintain program.
Bind Variables

· Always use bind variables. The importance of using bind variables can never be emphasized enough. In PL/SQL you get to use bind variables “for free”. Not using bind variables can lead to excessive hard parsing, increased CPU usage and library latch contention. A common mistake is to pass the IN parameters of the stored procedures directly to a dynamic SQL statement in the where clause:

· Examples below:
BAD: EXECUTE IMMEDIATE ‘DELETE FROM T_TABLE WHERE COLUMN’ || :p_parameter;
GOOD: EXECUTE IMMEDIATE ‘DELETE FROM T_TABLE WHERE COLUMN’ || :bind_variable USING p_parameter.

Remove Unused Variables from Programs

· You should go through your programs and remove any part of your code that is no longer used. This is a relatively straightforward process for variables and named constants. Simply execute searches for a variable's name in that variable's scope. If you find that the only place it appears is its declaration, delete the declaration and, by doing so, delete one more potential question mark from your code.

· There is never be a better time to review all the steps you took and understand the reasons you took them than immediately upon completion of your program. If you wait, you will find it particularly difficult to remember those parts of the program which were needed at one point, but were rendered unnecessary in the end. "Dead zones" in your code become sources of deep insecurity for maintenance programmers.

Views

· Views are not bad. Consider creating views to mask complex queries. However, use views with caution. If a table does not return any data, it should not be included in a view. Do not join two or more complex views. Do not use view as a table. Views must be created for specific purpose and used only for that purpose.
Helpful Hints

Concurrency, multiversion consistency model, read consistency, and types of locks

It is imperative to understand the above concepts. Read Oracle Database Concepts 10g Release 2 (10.2) Chapter 1 Introduction to the Oracle Database.
Debug with a Buddy

Ask for another view. Help each other and reduce time spent debugging code.

DBMS​_PROFILER
The DBMS_PROFILER package provides an interface to profile existing PL/SQL applications and identify performance bottlenecks. You can then collect and persistently store the PL/SQL profiler data.

This package enables the collection of profiler (performance) data for performance improvement or for determining code coverage for PL/SQL applications. Application developers can use code coverage data to focus their incremental testing efforts.

With this interface, profiling information can be generated for all named library units that are executed in a session. The profiler gathers information at the PL/SQL virtual machine level. This information includes the total number of times each line has been executed, the total amount of time that has been spent executing that line, and the minimum and maximum times that have been spent on a particular execution of that line.

The profiling information is stored in database tables which enables querying on the data, building customizable reports, and analysis of the data.

Oracle® Database PL/SQL Packages and Types Reference 10g Release 2 (10.2)
Explain Plan

Each stored procedure must be analyzed with a tuning tool and the PL/SQL and SQL code tuned to achieve stated user response time based on industry standards.

Read Oracle Database Performance Tuning Guide 10g Release 2(10.2) Chap. 19 Using Explain Plan.

Use the EXPLAIN PLAN statement or the V$SQL_PLAN view to display execution plans for each SELECT, UPDATE, INSERT, and DELETE statement to tune the performance of stored procedures.
Nulls, Handling Null Values in Comparisons and Conditional Statements

When working with nulls, avoid some common mistakes by keeping in mind the following rules:

· Comparisons involving nulls always yield NULL
· Applying the logical operator NOT to a null yields NULL
· In conditional control statements, if the condition yields NULL, its associated sequence of statements is not executed

· If the expression in a simple CASE statement or CASE expression yields NULL, it cannot be matched by using WHEN NULL. In this case, you would need to use the searched case syntax and test WHEN expression IS NULL.

In Example 2-28, you might expect the sequence of statements to execute because x and y seem unequal. But, nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the IF condition yields NULL and the sequence of statements is bypassed.

Example 2-28 Using NULLs in Comparisons

DECLARE

 x NUMBER := 5;

 y NUMBER := NULL;

BEGIN

 IF x != y THEN -- yields NULL, not TRUE

 DBMS_OUTPUT.PUT_LINE('x != y'); -- not executed

 ELSIF x = y THEN -- also yields NULL

 DBMS_OUTPUT.PUT_LINE('x = y');

 ELSE

 DBMS_OUTPUT.PUT_LINE('Can''t tell if x and y are equal or not.');

 END IF;

END;

/

In the following example, you might expect the sequence of statements to execute because a and b seem equal. But, again, that is unknown, so the IF condition yields NULL and the sequence of statements is bypassed.

DECLARE

 a NUMBER := NULL;

 b NUMBER := NULL;

BEGIN

 IF a = b THEN -- yields NULL, not TRUE

 DBMS_OUTPUT.PUT_LINE('a = b'); -- not executed

 ELSIF a != b THEN -- yields NULL, not TRUE

 DBMS_OUTPUT.PUT_LINE('a != b'); -- not executed

 ELSE

 DBMS_OUTPUT.PUT_LINE('Can''t tell if two NULLs are equal');

 END IF;

END;

/

NULLs and the NOT Operator
Recall that applying the logical operator NOT to a null yields NULL. Thus, the following two IF statements are not always equivalent:

IF x > y THEN high := x; ELSE high := y; END IF;
IF NOT x > y THEN high := y; ELSE high := x; END IF;
The sequence of statements in the ELSE clause is executed when the IF condition yields FALSE or NULL. If neither x nor y is null, both IF statements assign the same value to high. However, if either x or y is null, the first IF statement assigns the value of y to high, but the second IF statement assigns the value of x to high.

Read Oracle® Database PL/SQL User's Guide and Reference 10g Release 2 (10.2) Chapter 2 Fundamentals of the PL/SQL Language.

Refresh Schedule:
All guidelines and referenced documentation identified in this standard will be subject to review and possible revision annually or upon request by the DPW Information Technology Standards Team.
Guideline Revision Log:

	Change Date
	Version
	Change Description
	Author and Organization

	09/02/2009
	1.0
	InitialCreation
	Patty Gillingham

	
	
	
	

	
	
	
	

	
	
	
	

Oracle PLSQL Coding Guidelines.doc

Page 11 of 11

