
Software Quality Assurance Tests Page 1 of 19

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT’S OF PUBLIC WELFARE,

INSURANCE, AND AGING

INFORMATION TECHNOLOGY STANDARD

Name Of Standard:

Software Quality Assurance Tests

Number:

STD-EASS009

Domain:

Application

Category:

Testing / Software Quality Assurance Tests

Date Issued:

05/04/2010

Date Revised:

02/25/2014

Issued By Direction Of:

Shirley A. Monroe, Dir of Div of Technical Engineering

Abstract:

Application software testing is the process used to identify the correctness,
completeness, and quality of an IT system. It involves any activity performed to
evaluate an attribute or functional capability of a system or component of a system
and determine if it meets its expected and required results. Testing application
systems is a quality assurance function to facilitate the assessment of end product
quality and performance as well as costs to avoidance in capturing software errors
and systems anomalies prior to the software being released into a live production
environment.

The purpose of this standard is to establish processes used by the Department of
Public Welfare (DPW) to define criterion regarding software test methods and types
to eliminate or minimize defects impacting the intended use of software application
systems delivered to the customers.

The contracted solution providers performing work for DPW are required to establish
a comprehensive test plan with well designed execution strategies. The contracted
solution providers should identify specific constraints in the test plan document that
would limit their ability to thoroughly examine all the functionality and components
associated with the application. The contracted solution providers are also required
to identify specifically what functionality and/or components that cannot be tested
and any areas where test coverage or effectiveness will be diminished due to a
particular constraint. The contracted solution providers will coordinate with the

Software Quality Assurance Tests Page 2 of 19





Department to validate the constraint and if required outline mitigation strategies for
these specific constraints where feasible.

Adherence to these policies is mandatory. When a DPW and/or contracted solution
provider believe there is a need to deviate from these standards/policies, the agency
and/or Offeror must first receive written approval to do so from the DPW, Chief
Information Officer (CIO), Contract Administrator, or designated BIS Director.

General:

Software testing is a vital but integral component of the systems development life
cycle (SDLC). The objectives of software testing are to: 1) Identify and correct as
many defects as possible in the development phase; 2) Improve software integrity,
reliability, and end product quality; 3) Validate software meets all specified business
and technical requirements; 4) Assess operational readiness to support business
operations; 5) Evaluate and leverage test results to improve software development
and delivery processes and procedures; 6) Lower down stream maintenance costs.
For software testing to be effective, it must be carefully planned, designed,
executed, and accurately documented. Software testing is a key component of any
sound quality assurance and quality control program, software engineering process,
and ITIL release, deployment, and continual service improvement processes.

Standard:

Test Methodology

The following subsections describe test methodologies and types of testing to be
performed during project SDLC phases.

Testing requires both a standard for correctness and a means of determining
correctness. The standard for correctness is typically a requirement. A requirement
may include a specific description of functionality, a defined level of service, or a
prescribed format. The means of determining correctness is described below.

Elements of Testing

According to accepted best practices, four specific elements of testing are used to
determine correctness: inspection, analysis, demonstrations, and test.

Inspection: Inspection is the direct perception of the correctness of the item
under test. Examples include viewing application input based entry forms to
ensure that the field labels are correct, viewing a printed report to ensure that
the format and content are correct or other examples where the immediate
perception of the item under test will reveal whether it is correct.

Analysis: Analysis is the assessment, calculation, or breakdown of an item
under test to determine that the perceived information is correct. Analysis is
the process of taking the immediate data or presentation and either
decomposing it or combining it with other information to ensure that the item





Software Quality Assurance Tests Page 3 of 19

under test is correct. Examples of analysis include the manual calculation of a
result displayed by the item under test, using the source data used by the test
item to ensure that the item under test performs the calculation correctly, the
investigation to determine whether a business rule has been applied correctly,
or other examples which validate that information provided by or functions
performed by the item under test are correctly derived.

Demonstration: Demonstration is the simple execution of a function in the
item under test. In demonstration, the item under test initially resides in one
state and is triggered to perform some function that either results in an output
and/or causes the item under test to move to a new state. Examples of
demonstration include accepting a form, generating a report, posting to an
account, saving a file, or other actions that are the direct result of triggering
an event. Like inspection, the correctness of a demonstration can be
immediately perceived; but unlike inspection, an event must occur to cause
the item under test to perform its function. This includes Business and
Technical walkthroughs by development teams with project stakeholders.

Test: Test is the methodical (and typically documented) combination of a set
of inspections, analyses, and demonstrations that provide a well-defined test
procedure to ensure the correctness of some functionality in the item under
test. Usually, a complex function cannot be assessed for correctness by a
single inspection, analysis, or demonstration. Most commonly, a series of
steps must be performed that include some ordered set of demonstrations
with inspections and analysis to verify functionality.

The elements of testing are applicable to each of the types of tests described
below.

Functional Testing

Functional testing ensures that the system or system component correctly
performs its intended function. In addition to a description of the function to be
performed, functional requirements may include requirements for allowable or
unallowable inputs and outputs and specific operations to be performed in
satisfying the function.

If functionality will be tested against use cases, the actor, pre-conditions, post-
conditions, scenarios, and alternate scenarios should be validated in testing to
ensure that the functionality satisfies the use case.

Functional testing should address these factors for each function to be tested.
Each functional test should have a unique identifier and each functional test
should trace to the function or design element (and its unique identifier) to be
tested.

Data Testing

Software Quality Assurance Tests Page 4 of 19

Testing of data includes both the testing of the data contained within the system
and the testing of the data used by the system.

Internal data may be in the form of constants, rules, or other data that is either
static or seldom changes during the production use of the system

External data includes both data that is accepted by the system and data that is
generated by the system, such as user input, communications with other
applications, database sources, constructed data, and reports.

Testing of data ensures that the item under test accepts or delivers all and only
the data intended for that item, in the form, format, and frequency that is correct
for that item.

Each data test should have a unique identifier, and each data test should trace to
the function (and its unique identifier) that describes the data to be tested.

User Testing

User testing ensures that the item under test meets usability, accessibility, and
user documentation requirements.

User testing for usability and accessibility addresses the required behavior of the
user interfaces. These should be documented in a set of specific requirements
that ensure the testability of the user interface. The ultimate success of systems
that are heavily dependent upon user interfaces often rests upon the clarity of the
requirements for the user interface and the success of the system in meeting
those user interface requirements.

User interface testing should ensure that the user interface meets the quantified
and specific look and feel requirements, including any performance or ease-of-
use requirements that are documented in specific, testable terms (e.g., requiring
a system to be easy to use is a highly subjective and therefore less testable
requirement than requiring a system to provide a display response time of less
than or equal to one second.).

Testing of user documentation includes testing of online documentation, help,
and other support text to ensure it is correct and adequately supports the needs
of the typical users. User documentation testing also includes testing of the
system according to any written documentation to ensure that the documentation
correctly describes the component or system functionality (e.g., installation
instructions for the system should be tested by performing an installation
according to the instructions).

Each user test should have a unique identifier, and each user test should trace to
the user requirement (and its unique identifier) that describes the user function to
be tested.

Non-functional (Systems Requirements) Testing

•

•

•

•

•

Software Quality Assurance Tests Page 5 of 19

In the following subsections, describe the non-functional or systems
requirements testing for the project.

Non-functional or systems requirements testing validates required qualities or
properties of the system that address how well some behavioral or structural
aspect of the system should be accomplished. Non-functional tests include:
performance testing, quality testing, and interface testing, among others.

Performance Testing

Performance testing ensures that the item under test meets specified
requirements for throughput, number of users, response times, maximum
workloads, and other performance characteristics of the item.

Performance testing may include load, stress, and availability testing. Load
testing determines the ability of the item under test to support the performance
requirements while under increased use up to the stated bounds of its capability.
Stress testing determines the ability of the item under test to deal with situations
when loads exceed the bounds of the stated capability (e.g., whether the item
locks up, fails, processes in a degraded fashion, or otherwise changes
performance). Availability testing determines whether the item under test is
available according to its stated availability requirements (e.g., 24x7 ability to log
in to the application).

Load and stress typically have a direct impact on availability and performance
testing and typically addresses each individually as well as in combination. For
example, a performance test may test an item under load with transient stresses
while looking simultaneously at the effect of load and stress on availability.

Each performance test should have a unique identifier and each should trace to
the performance requirement (and its unique identifier) that describes the
performance requirement to be tested.

Quality Testing

Quality validation includes the following subcategories:

 Correctness – Correctness is the extent to which specifications are satisfied
and mission objectives are fulfilled.

Efficiency – Efficiency is the relationship between the level of performance of
the product and the amount of resources used, under stated conditions.

Flexibility – Flexibility is the effort required to modify operational product.

Integrity/Security – Integrity/Security is the extent to which access to the system
or data by unauthorized personnel can be controlled.

 Interoperability – Interoperability is the effort needed to couple one system with
another.

•

•

•

•

•

•

Software Quality Assurance Tests Page 6 of 19

Maintainability – Maintainability is the effort required to locate and correct an
error during operation.

Portability – Portability is the effort needed to transfer from one hardware or
software environment to another.

Reliability – Reliability is the extent to which the system performs with required
precision and robustly responds to reliability challenges (e.g., through fail over or
degraded operation).

Reusability – Reusability is the extent to which the system and associated
artifacts can be reused in another application.

Testability – Testability is the effort needed to test to ensure software performs
as intended.

 Usability – Usability is the effort required to learn, operate, prepare input for,
and interpret output from the system.

Though many quality requirements for a system may be general to the system,
some may be specific to particular function(s) or component(s) of the system.
Any associated testing for these quality requirements must address the scope
and limitations of the particular requirement. For example, the entire system may
have a general security requirement that prohibits unauthorized users from
accessing the system. Conversely, a portability requirement may be applicable
only to a specific user interface of a system.

Specific quality requirements may also be mutually limiting or may compete with
performance or functional requirements. For example, maintainability and
security may conflict at times, since making a system more secure may also
decrease its maintainability. Similarly, portability is often at odds with systems
that require extremely high performance, since tuning a system for performance
may make it less portable. Unless care is taken in test planning and design,
these issues tend toward less objective criteria for testing quality requirements.

For each quality requirement that is satisfied through testing (as opposed to other
forms of validation), the test should have a unique identifier, and each should
trace to the quality requirement (and its unique identifier) to be tested.

Interface Testing

Interface testing determines the correctness of the defined interfaces for the
system. These interfaces may be internal to the system or with interfaces with
other systems. The interfaces may be between software and hardware
components or software and software components. The interface typically has a
specific format, message set, and protocol. Testing the interface according to the
requirement will necessitate testing the interface features and any performance
and error detection/recovery mechanisms for the interface.

Each interface test should have a unique identifier, and each should trace to the
interface definition and requirement and its unique identifier.

.

Software Quality Assurance Tests Page 7 of 19

Security Testing – Software Vulnerability Testing

Vulnerability testing is a method of evaluating the security of a computer system
or network by simulating an attack from a malicious source. The process
involves an active analysis of the system for any potential vulnerabilities that
could result from poor or improper system configuration, both known and
unknown hardware or software flaws, and operational weaknesses in process or
technical countermeasures. This analysis is carried out from the position of a
potential attacker and can involve active exploitation of security vulnerabilities.
Any security issues that are found will be presented to the system owner,
together with an assessment of their impact, and often with a proposal for
mitigation or a technical solution. The intent of a penetration test is to determine
the feasibility of an attack and the amount of business impact of a successful
exploit, if discovered. It is a component of a full security audit.

Penetration tests can be conducted in several ways. The most common
difference is the amount of knowledge of the implementation details of the
system being tested that are available to the testers. Black box testing assumes
no prior knowledge of the infrastructure to be tested. The testers must first
determine the location and extent of the systems before commencing their
analysis. At the other end of the spectrum, white box testing provides the testers
with complete knowledge of the infrastructure to be tested, often including
network diagrams, source code, and IP addressing information. There are also
several variations in between, often known as grey box tests. Penetration tests
can also be described as "full disclosure" (white box), "partial disclosure" (grey
box), or "blind" (black box) tests based on the amount of information provided to
the testing party.

White Box Testing

In white box testing, the UI is bypassed. Inputs and outputs are tested directly at
the code level and the results are compared against specifications. This form of
testing ignores the function of the program under test and will focus only on its
code and the structure of that code. Test case designers shall generate cases
that not only cause each condition to take on all possible values at least once,
but that cause each such condition to be executed at least once

Branch Testing

Using the program flow graph for each function, we will be able to determine all
of the branches that will need to tested and will be used to develop the
corresponding test cases.





Software Quality Assurance Tests Page 8 of 19

Black Box Testing

Black box testing typically involves running through every possible input to verify
that it results in the right outputs using the software as an end-user would. We
have decided to perform Equivalence Partitioning and Boundary Value Analysis
testing on the application.

Equivalence Partitioning

In considering the inputs for equivalence testing, the following types could be
used:

Legal input values – Test values within boundaries of the specification
equivalence classes. This shall be input data the program expects and is
programmed to transform into usable values.
Illegal input values – Test equivalence classes outside the boundaries of
the specification. This shall be input data the software application system
may be presented, but that will not produce any meaningful output.

The equivalence partitioning technique is a test case selection technique in which
the test designer examines the input space defined for the unit under test and
seeks to find sets of input that are, or should be, processed identically. The
following table represents an example of equivalence classes, both valid and
invalid.

Software Quality Assurance Tests Page 9 of 19

Input/Output Event Valid Equivalence Classes Invalid Equivalence
Classes

Input maximum number
of allowed values

25 values > 25 values

Input integers Integers between –999 and
999

Integers > 999

Integers < -999

Non-integers (characters)

Non-integers (decimal
values)

Load external file Comma delimited file with only
one value per line

File exists

No commas

Multiple entries per line

No file content

File does not exist

Store external file File exists File does not exist

Function Validation Testing
Functional testing Integration will be tested based on the requirements. The
behaviors of each function, as well as their respective algorithms, are contained
in the Software Application System Specifications.

Function Expected Behavior

Load see Software Program Specification

Store see Software Program Specification

Insert see Software Program Specification

Delete see Software Program Specification

Search see Software Program Specification

Clear see Software Program Specification

List in Ascending Order see Software Program Specification

List in Descending Order see Software Program Specification

Software Quality Assurance Tests Page 10 of 19









Performance Testing
This test will be conducted to evaluate the fulfillment of a system with specified
performance requirements. It will be done using black-box testing method. And this
will be performed by:

Storing the maximum data in the file and trying to insert, and observe how the
application will perform when it is out of boundary.

Deleting data and check if it follows the right sorting algorithm to sort the
resulting data or output.

Trying to store new data and check if it over writes the existing once.

Trying to load the data while they are already loaded

Other Testing

Other testing includes testing of features or requirements that are deemed to
require testing that are not covered in the types of tests described above, ie:
Federal and State requirements, ADA compliance. All other tests should have a
unique identifier and each test should trace to the definition, requirement, and its
unique identifier.

Phases of Testing

Provide an overview of the test effort for the project by completing the Test
Phase Chart provided in the template. Identify the planned test phases and
provide the general objective, focus, test types, staffing, environment, entry
criteria, suspension criteria, and exit criteria for each phase.

Test Phase Unit Integration System User
Acceptance

Producti
on

Objective To test units
of code that
are
considered
complete

To ensure
that
aggregates
of units
perform
accurately
together

To ensure
that the
system
performs
according to
documented
requirements
and the
customer’s
expectations

To ensure
that the
completed
system
performs
according to
documented
requirement
s and the
customer’s
expectations

Focus Correctness
of specific
functionality
of a unit and
its input,
outputs, and
primary and
fault
handling

Correctness
of the
aggregate
with regard
to its
associated
requirement
s

Correctness
of the
system and
that it
conforms to
stated
requirements

Correctness
of all
functionality
of the
system

Test Types/ Subtypes Functional
(low-level),

Functional,
Data,

Functional,
Data,

Functional,
Data,

…

Software Quality Assurance Tests Page 11 of 19

•

•

Test Phase Unit Integration System User Produ
Acceptance ction

Data,
Performance
,
Integrity/Sec
urity,
Interface

Performance
, Reliability,
Integrity/Sec
urity,
Interface,
Usability

Performance
, Reliability,
Integrity/Sec
urity,
Interface,
Usability

Performance
, Reliability,
Integrity/Sec
urity,
Interface,
Usability

Staffing Developmen
t Team
(author of a
unit should
not be the
tester)

Test Team,
independent
of the
development
team
(member of
the
integration
test team
should not
perform
revisions to
code he is
testing)

Test Team,
independent
of the
developmen
t team
(member of
the system
test team
should not
perform
revisions to
code he is
testing)

Customers
or end
users, can
be lead by
testers
independent
of the
development
team
(member of
the
acceptance
test team
should not
perform
revisions to
code he is
testing)

…

Environment Developmen
t

Should be
performed in
an
environment
segregated
from
development
and
controlled by
a group
independent
of the
development
team

Should be
performed in
an
environment
segregated
from
developmen
t and
controlled
by a group
independent
of the
developmen
t team

Should be
performed in
an
environment
segregated
from
development
and
controlled by
a group
independent
of the
development
team

Should be
identical to
the product-
ion
environment
or as close
as possible

...

Software Quality Assurance Tests Page 12 of 19

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Test Phase Unit Integration System User Production
Acceptanc
e

Entry Criteria
Code

complete
Software

Test Plan
approved

Unit test
procedure
and
scenarios
approved

Unit test
data
approved

Code
complete
 Software

Test Plan
approved
 Unit test

successful
 Integration

test
procedure
and
scenarios
approved
 Integration

test data
approved
 Integration

test exit
criteria,
including
allowable
errors and
functional
discrepancies
, specified

Code and
documentati
on baselined

Software
Test Plan
approved

Integration
test
successful

System
test
procedure
and
scenarios
approved

System
test data
approved

System test
exit criteria,
including
allowable
errors and
functional
discrepancie
s, specified

Unit and
Integration
test reports
complete

Requiremen
ts
Traceability
Matrix
complete

User
documentati
on complete

Test
Readiness
Review
minutes
complete

Code and
documentati
on baselined

Software
Test Plan
approved

Integration
test
successful

Acceptance
test
procedure
and
scenarios
approved

Acceptance
test data
approved

Acceptance
test exit
criteria,
including
allowable
errors and
functional
discrepancie
s, specified
 Unit,

Integration,
and System
test reports
complete

…

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Software Quality Assurance Tests Page 13 of 19

Suspension Criteria
Environmen
t Issues

Design
rework

Developme
nt rework

Requireme
nts
changes

Unit
developme
nt not
complete

Unit test not
complete,
unsuccessf
ul, or
inadequate

Environmen
t issues

Design
rework

Developme
nt rework

Requireme
nt changes

Defects
encountere
d > X
 Fault with

major
feature that
prevents
significant
functionality
from being
tested

Environmen
t issues

Design
rework

Developme
nt rework

Requireme
nt changes

Defects
encountere
d > X

Installation
problems
 Fault with

major
feature that
prevents
significant
functionality
from being
tested

Environmen
t issues

Design
rework

Developme
nt rework

Requireme
nt changes
 Defects

encountere
d > X

Installation
problems

Fault with
major
feature that
prevents
significant
functionality
from being
tested

…

Exit Criteria
Test logs

approved
Unit test

scenarios
passed

Unit is
baselined

Test logs
approved

Allowable
errors and
functional
discrepanci
es

Allowable
errors and
functional
discrepanci
es do not
exceed
thresholds

Test logs
approved

 Allowable
errors and
functional
discrepanci
es do not
exceed
thresholds

System is
baselined

Test logs
approved

Stakeholder
acceptance

…

Testing Identified by Specific Project: Project Management Approach

The following subsections describe the types of testing which correlate to the
various types of requirements for the system or system component. The specific





Software Quality Assurance Tests Page 14 of 19

testing approaches will be defined per individual project during the Project
Management Planning Phase and implemented in the Execution and Monitoring
and Controlling Project Management Phases.

Test Schedule

Provides a reference to the location of the project test schedule information or
specify the project test schedule information that establishes the sequence and
coordination for the project’s test activities. State the sequence and
dependencies among all test activities and the relationship of key test activities to
project milestones or events. Cover the duration of the Software Test Plan and
include all major milestones of the project related to test activities. Include
resources, prerequisites, and start/completion dates for each activity, deliverable,
and milestone.

Test Monitoring

Describes monitoring activities and milestones that will be used to evaluate
actual progress to plan. Execution of the Software Test Plan must be monitored
to recognize deviations from plan. Testing progress and success depends on
realistic, detailed Software Test Planning and frequent, interim milestones at
which actual progress can be compared with the plan to identify deviations.

Commonly monitored test metrics include percent of system tested, test cases
executed/passed/failed/not executed, number and severity of problems reported,
number of problems closed/resolved/retested, and cost of test effort (estimated
versus actual).

Examination and evaluation of these metrics should include trend analysis. Trend
analysis of metrics provides the ability to make comparisons between the
project’s metrics from other test phases or cycles and between metrics from
other projects. Trend analysis can provide substantial information about the
quality of the product or product segment.

Test Reporting

Describe reports that will be used during testing. Each test phase should have
one or more reports to document test execution and results. The reports will:

 Identify the items tested

 Summarize the evaluation of the planned test items (expected versus
actual, including the impact of variances)

Software Quality Assurance Tests Page 15 of 19





















o
o
o

o

o

o

o

o

o



Indicate the version/revision level of the software tested

Indicate the environment in which the testing took place

Contain references to the Software Test Plan, test scenario, test
procedure, test log, and problem reports, if they exist

Specify metrics that were monitored during the testing effort, including any
trend analysis compiled

Contain a comprehensive test evaluation summary, including conclusions
regarding the quality and stability of the product.

Examples of Deliverables

Program function specifications

Program source code

Test plan document - this document should address testing objectives,
criteria, standards, schedule and assignments, and testing tools.

Unit Testing Plan
Integration Plan
System Testing Plan

Test Design Document
Unit white-box test design – covers white testing criteria, methods
and test cases
Unit black-box test design – covers black-box testing criteria,
methods and test cases
System test design – covers system test criteria, methods, and test
cases, scripts.

Test report document
Unit white-box test report – covers unit white box test results,
problems, summary and analysis
Unit black-box test report – covers unit black box test results,
problems, summary and analysis
System Test report – covers system test results, problems,
summary and analysis

Unit Testing Phase

Unit Testing is done at the source or code level for language-specific
programming errors such as bad syntax, logic errors, or to test particular
functions or code modules. Unit testing tests a single module or a related group
of modules with the intention of finding errors. The unit test cases shall be
designed to test the validity of the programs correctness.

 Test negative exceptions as well as positive conditions.











Software Quality Assurance Tests Page 16 of 19



















Test for boundary conditions, i.e., high, low, range values or alpha in
numeric fields.

Test all possible paths of flow, including unchanged code.

Verify screen navigation.

Check transaction security is at appropriate levels.

Check screen or report layouts are to specification.

Check response time is at an acceptable level, considering run is in the
test environment. Check new ECL or ECL changes.

Verify that the program reaches successful completion.

Verify program documentation has been modified or added.

If applicable test internal controls.
Use test scripts or a plan which lists conditions and expected results for
individual modules.
Ideally, use test case designs which maximize the number of errors by a finite
number of test cases. This is not required to be formal documentation.
Errors which are detected may be formally or informally documented by the
programmer for correction and retesting.

Module Testing Phase

Testing two or more modules for functionality and recording results. Example:
There are two primary modules that will need to be integrated: the Application
Layer front end and the Application Layer back end. The two components, once
integrated, will form the complete module or Application System test.

Integration Test Phase

In this phase of software testing individual software modules are combined and
tested as a group. It follows unit testing and precedes system testing.

The primary purpose of integration testing is to prove that representative data will
flow all the way through the system, producing valid output and will handle invalid
data conditions. Integration testing also verifies that the data flow between this
system and other interfacing systems is correct.

Ensure that modules have been unit tested.

Develop a formal plan of how each set of programs/modules will be
integrated.

Define a time line when each set of programs will be tested.

Create a test script to list areas to be tested at high level functions, i.e., ’order
entry’, ‘update A/R’.

Create a sequence of specific tests including expected results within each
high-level grouping.

Software Quality Assurance Tests Page 17 of 19



















An integration test log of errors should be maintained by the tester for
releases, large and medium development projects.

Production and test data should be used. If production data is not available,
the test data should be representative of the production environment.

A complete review of test results by the programming staff is extremely
important at this phase; users may be involved in test data entry and review
of results.

Timing runs should be made using input volumes similar to or greater than
those anticipated in actual operations to ensure peak loads can be handled.

Retest job-to-job controls.

Verify storage allocations are adequate for expected growth.

Performance tests should be run to be sure run times/response times are
acceptable.

Program changes should be reflected in the program, user, and system
documentation.

The documentation should be tested against what is actually delivered to
verify that it is adequate to enable users and computer operations to run the
system.

System Acceptance Test Phase

The goals of system testing are to detect faults that can only be exposed by
testing the entire integrated system. System testing is mainly concerned with
areas such as performance, security, validation, load/stress, and configuration
sensitivity. System test focuses on functions and performance, reliability,
instillation, behavior during special conditions, and stress testing.

User Acceptance Test Phase

The primary purpose of user acceptance testing is to determine if the system
performs to business specification. Development of the acceptance criteria and
test plan and the actual performance of user acceptance testing is the
responsibility of the user.

The test plan includes tests of all system functions. Each system function should
include specific test cases with expected input data and test results. The user
project manager/coordinator maintains the log to keep track of test cases, error
resolution and retesting. The format for documenting test cases and the error log
is up to the user project manager. Samples from other systems user testing may
prove helpful.

In some instances, such as production problem resolution or releases, user testing
may have been performed during integration testing. All user acceptance testing is
done in a test environment. If there are several libraries in test, user testing should
be reserved for one of the testing environments.

Software Quality Assurance Tests Page 18 of 19





























Verify valid data flows through the system correctly and invalid data is
handled appropriately.

Check all edits, validation rules, default values, error messages and warning
messages.

Attest system security is at appropriate levels, e.g., restricted add/update
authority for tables/databases.

Validate system controls such as error file handling or duplicate entry
processing.

Make sure response times for processing are acceptable.

Ensure disaster recovery procedures are put in place.
If applicable to the system, it is also suggested that you:

Verify screen navigation is correct and easy to follow.

Check screen and/or report layouts to assure all required data exists and is
mapped correctly.

Assure system can handle high volumes.

Where add/updates are performed, assure correct values are placed on the
databases/tables.

Verify data transmission to and from system are successful.

SQA verifies that all open product defects, regardless of fixed defects,
documented, deferred, or otherwise addressed.

SQA verifies that regression testing on all product defects and the entire
product has been completed.

SQA verifies that all defects “For Verify” have been regressed.

The software is frozen when the product passes its final milestone. If any code
changes are made after the final milestone, the features fixed must be re-tested.
SQA and Development Team closely monitor fixes that go into the final build to
minimize risk. After the final milestone criteria have been met, the product enters
the Test for Production phase.

Business stakeholder acceptance signoff approval for production
implementation.

Test for Production Phase

The test-for-production (TFP) environment must mirror the production
environment except during the brief period when you are testing application
migrations.

The TFP environment provides the platform for testing the effect and impact of
an imminent change to production environment. By performing these changes on
the TFP environment the risk of performing the changes directly to the production
environment is reduced.

Software Quality Assurance Tests Page 19 of 19









Production Implementation Phase

Production implementation follows the Project Development Team
Implementation Plan. Project stakeholders are informed of the pending
implementation. Stakeholder teams are prepared for production implementation,
roles and responsibilities. Implementation is conducted. Stakeholder Go-NoGo
decision point is conducted. Implementation proceeds with post implementation
tasks, monitoring and controlling or the fall back plan is implemented.

Exemptions from this Standard:

There will be no exemptions to this standard.

Refresh Schedule:

All standards and referenced documentation identified in this standard will be subject to
review and possible revision annually or upon request by the DPW Information
Technology Standards Team.

References:

This document contains best practices, suggestions, and ideas that were gathered from
experience or study of the following sources.

IEEE Standard for Software Test Documentation (ANSI/IEEE Standard 829-
1983)

Defense Finance and Accounting Service – Software Test Plan

www. CarnegieQuality.com

http://www2.dir.state.tx.us/management/projectdelivery/projectframework/P
ages/Framework.aspx

Standard Revision Log:

Change
Date

Version Change Description Author and Organization

04/29/2010 1.0 Initial creation Thomas King

12/28/2010 1.1 Reviewed Content – No Changes Thomas King

02/25/2014 1.2 Reviewed Content – Changed Director
name to Kevin Gray, content is current

Michael Light

http://www.carnegiequality.com/2006/05/12/software-defect-life-cycle/
http://www2.dir.state.tx.us/management/projectdelivery/projectframework/Pages/Framework.aspx
http://www2.dir.state.tx.us/management/projectdelivery/projectframework/Pages/Framework.aspx

